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We study the process of spinodal decomposition in a scalar quantum field theory that is quenched
from an equilibrium disordered initial state at T; > T, to a final state at 7,~0. The process of the for-
mation and growth of correlated domains is studied in a Hartree approximation. We find an approxi-
mate scaling law for the size of the domains £,(z)~1/1&, at long times for weakly coupled theories,

where &, is the zero-temperature correlation length.

PACS number(s): 05.70.Ln, 11.10.—

The process of phase separation through spinodal
decomposition is well understood within the context of
classical nonequilibrium statistical mechanics [1-3].
When the quench is at criticality, it is primarily associat-
ed with the onset and growth of unstable longwavelength
modes (we will not discuss nucleation here).

Spinodal decomposition is conjectured to have taken
place during phase transitions in the early Universe typi-
cally described by scalar quantum field theories [4-6].
Thus it becomes an important issue to understand and
describe the mechanism of phase separation in quantum
field theory with the definite motivation provided by
cosmological phase transitions. An attempt to study
some of these issues was reported by Mazenko and colla-
borators [7]. Understanding the process of phase separa-
tion in quantum many-body systems may also prove
relevant within the context of mesoscopic systems and
quantum phase transitions in condensed matter. In this
paper, we introduce the techniques of nonequilibrium
quantum statistical mechanics to study the process of
phase separation in a typical scalar field theory.

From the outset we recognize fundamental differences
between classical theories of spinodal decomposition, and
the description of phase separation in a quantum system.
In the former, the equations of motion are purely dissipa-
tive, whereas in the latter, the Heisenberg operator equa-
tions of motion are second order and thus time-reversal
invariant. Furthermore, thermal fluctuations are incor-
porated in the classical description via a Langevin noise
term, typically wuncorrelated and satisfying the
fluctuation-dissipation relation, whereas in the quantum
description, both thermal and quantum fluctuations are
present in the initial density matrix that describes the ini-
tial ensemble.

We model the physical situation of a “critical quench”

z, 11.90.+t, 64.90.+b

via a time-dependent Hamiltonian

Hn= [ dx i3 I —[V<l>(x)]

+—= mz(t)q)z(x)-l— d>4(x)] ) (1
mAt)=mle(—t)—m?O(r), k)
mi2=p,2 %—1 s mj%Z,u,2 —;—é) y (3)

with u?>0, T,>T,, T;=0, and O(z) the step function.
The initial state of the system (at t <0) is assumed to be
described by an equilibrium density matrix at the initial
temperature 7.

pi=e i @)

H,=H (t<0). (5)

In the Schrodinger picture, the density matrix evolves
in time as

p=U)p; U 1), (6)

with U (t) the time evolution operator. In the present
case, the order parameter [Trp(?)[ d 3x®(x)]/Trp;
obeys a Heisenberg equation of motion and is not con-
served. The expectation value of operators may be com-
puted by introducing the generating functional

Z[JT,J 1=TrU(T—iB;, T)
XU(T,T;J ) UT,T;JV), (7

with T— — o, T'— oo. It is found that

- T : . - i T T
Z[Jt,J ]=exp lfT 1Ly (—i8 /8] ) — L, (i8/8T )] ’exp léfT dtlfT dt, (8 ) (15)G o (11,85) |, (8)

with G,, the Green’s function on a contour [8]. The quantities of interest are
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S (r;t)={(P(r,1)®(0,1)) , 9)
o dk g
S(r;t)—f—(—2—7;)~3—e KD ()P (1)) . (10)

The equal-time correlation function at zeroth order (“tree
level”) is thus found to be

<<I>k(t)<1>ﬁk(t))=2;

T UL (U (t)coth[ B0 (k) /2]

The boundary conditions on the homogeneous solu-
tions are

Fio (k)i

UE(t<0)=e , o (k)=[kK*+m?]'? (13)

corresponding to positive frequency (particles) and nega-
tive frequency (antiparticles) [ (¢), Uy (1), respective-
ly].

The “free field” mode functions are easily found. For
¢t >0, they consist of stable modes (k2> m}) and unstable

(11)  modes (k?<m?). These unstable modes are responsible
with the mode functions obeying fpr the groth of cor.relatlons. The zeroth-order equal-
time correlation function becomes
d? 1
— +k*+m2(e) |UE=0 (12) @ e ;
a2 k (D (D _ (1)) 2w<(k)coth[ﬁ,w<(k)/2] (14)
with m(t) given by (2). for t <0, and
|
(D ()P _ (1)) = —1—[( 1+2 A4, By {cosh[2W (k)t]—1})O(m } —k?)
20 (k)
+(1+42a, by {cos[ 2w, (k)t]—1})O(k*—m})]coth[B;w . (k) /2] (15)

with o, (k)=(k>=m})!? and W (k)=(m}—k?»'?, for
t>0.

The first term, the contribution of the unstable modes,
reflects the growth of correlations because of the instabil-
ities and will be the dominant term at long times in this
approximation.

It is convenient to introduce the dimensionless quanti-
ties
2 m} _ [Tiz_Tcz]

k
=% _ T Al
my m}  [T?—Tj}]

’

(16)
7'=mft , X=myr,

and the critical temperature T2=24u’/)A [4-6], in terms
of which the ‘“tree-level” subtracted structure factor
S(O)(k,t)“S(O)(k,O)‘—‘(l/mf)e?(O)(K,T) becomes

1/2 2
T; 1)
8, 7)= # 2 12 1+
T? T. |20 | W2
r1——L
c
X[cosh(2W, 7)—1], a7
0?=i®+L*, W, =1—k>. (18)

To obtain a better idea of the growth of correlations, it is
convenient to introduce the scaled correlation function

A me k2dk sin(kr)
Dlx) Gm}fo 22 (kr)

[S(k,1)—S(k,0)] .

(19)

The reason for this is that the minimum of the tree-level
potential occurs at AD2/6m 7=1, and the inflexion (spi-
nodal) point, at A®*/2m7=1, so that D(0,7) measures
the excursion of the fluctuations to the classical spinodal

and beyond as the correlations grow in time.

At large 7 (time), «*$(k,7) has a sharp peak at
k,=1/V'7 with amplitude exp[27]/7 (see Fig. 1). We
find for x <7 and T,=0

_ x? | sin(x /V'7)
D(x,7)=D(0, T)exp o —(x/\/;) , (20)
T, |’
172
A 2T, exp[27]
DO~ | 5 2 v @1
72!

Restoring dimensions, and recalling that the zero-
temperature correlation length is £(0)=1/V"2u, we find
that for T,~0 the amplitude of the fluctuation inside a
“domain” (®*(1)), and the ‘“‘size” of a domain & (?)
grow as
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FIG. 1. (rexp[—27r]«8k,7) for A=10"'% T,/T,=2 and
=10, 13, 16, 19.
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2
(oin)~ [V'2t/£(0)]*

, Ep(D)=(8V2)VW1E(0) .

(22)

The presence of the instabilities precludes a well-
defined perturbative expansion. Consider a one-loop con-
tribution to the equal-time correlation function. The
“external legs” obtain a contribution from the unstable
modes, but in the loop integral, the integration over the
momenta also includes a contribution from the unstable
modes. It is clear that eventually the one-loop correction
dominates and perturbation theory breaks down, even for
the case of very weak couplings. This feature will persist
to all orders in a perturbative expansion. The dynamics
of the phase transition cannot be studied in perturbation
theory.

Our nonperturbative approach is based on a Hartree
approximation, which is similar to the early approach of
Langer [9] for classical spinodal decomposition. It is im-
plemented by the replacement

m2(t)—>m2(t)+%(d>2(t))

(where we used spatial translational invariance).
This leads to the self-consistent set of equations

[—5—;+k2+m2(t)+—(¢>2(t >l i=0, (23)
J
d3k 1
2 _ 2 —_ x -
[(@%1)) —(@%0))] f<277)3 20 (o LU (Ui
d2
d2+k2+mR t)+———[<<l>2 1)) —(D%0))] |U()=
T? T?
- i ;
m3(t)=p% —T—cz—lle(—t) ——]3]6(:) )

with T; > T, and T, <<T,. With the self-consistent solu-
tion and boundary condition for ¢ <0

(DXt <0))—(PX0))]=
UiE(t <0)=exp[ Fiw (k)t],
o (k)=(kK*+mZ)'?.

(30)

(31)

This set of Hartree equations is extremely complicated
to be solved exactly. However, it accounts for the pro-
cess of coarsening [1]. Consider the equations for ¢ >0,
at very early times, when (the renormalized)
(®%(t)) —{PX0)) =0 the mode functions are the same
as in the zeroth-order approximation, and the unstable
modes grow exponentially. By computing the expression
(27) self-consistently with these zero-order unstable
modes, we see that the fluctuation operator begins to
grow exponentially.
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d3
27)} 20 ( )
X coth[B;0 (k)/2] .

()= [

——— U (UL (1)

(24)

The composite operator {(®*(r,t)) needs one subtrac-
tion and multiplicative renormalization. The subtraction
is absorbed in a renormalization of the bare mass, and the
multiplicative renormalization into a renormalization of
the coupling constant. The Hartree approximation pro-
vides a self-consistent nonperturbative scheme that sums
an infinite series of Feynman diagrams [10]. For z <0
there is a self-consistent solution given by

(1)) =(DX0)) , U(t)=exp[Fio_ (k)t], (25)

co2<(k)=k2+m,-2+%+(d>2(0))=k2+mfR ,  (26)
and m2p =px[(T?/T?)—1]. For t>0 we subtract the
composite operator at t=0 absorbing the subtraction
into a renormalization of m} which we now parametrize
as mfz’R =u3[1 ——(T}/TCZ)]. This choice of parametriza-
tion only represents a choice of the bare parameters. The
logarithmic multiplicative divergence of the composite
operator will be absorbed in a coupling-constant renor-
malization consistent with the Hartree approximation
[10]. However, for the purpose of understanding the dy-
namics of growth of instabilities associated with the
long-wavelength fluctuations, we will not need to specify
this procedure. After this renormalization, the Hartree
equations read as

)—1]coth[B,0 (k) /2], (27)

(28)

(29)

[

As (®%(1)) — (P*0)) grows larger, its contribution to
the Hartree equation tends to balance the negative mass
term, thus weakening the unstabilities, so that only
longer wavelengths can become unstable. Even for very
weak-coupling constants, the exponentially growing
modes make the Hartree term in the equation of motion
for the mode functions become large and compensate for
the negative mass term. Thus when

[ @) —(@%0)) ]=~1
mf,R

the instabilities shut off; this equality determines the “spi-
nodal time” ¢;,. The modes will still continue to grow fur-
ther after this point because the time derivatives are fair-
ly (exponentially) large, but eventually the growth will
slow down when fluctuations sample deep inside the
stable region.
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After the subtraction, and multiplicative renormaliza-
tion (absorbed in a coupling-constant renormalization),
the composite operator is finite. The stable mode func-
tions will make a perturbative contribution to the fluctua-
tion which will be always bounded in time. The most im-
portant contribution will be that of the unstable modes.
These will grow exponentially at early times and their
effect will dominate the dynamics of growth and forma-
tion of correlated domains. The full set of Hartree equa-
tions is extremely difficult to solve, even numerically, so
we will restrict ourselves to account only for the unstable
modes. From the above discussion it should be clear that
|

d?

“ata —1+f dp [w;(r)w;m—l]]

_p
p 2 +L 2
with the boundary conditions (30) for ¢ <0 and
VvV 24hg T,

47 [T?—T}'?

g= (33)

The effective coupling (33) reflects the enhancement of
quantum fluctuations by high-temperature effects; for
T /T,.~0, and for couplings as weak as Az ~10"1%

~107( T;/T.). This value of the coupling has particu-
lar significance in inflationary models and arises from
bounds on density fluctuations [4—6]. Equations (32) may
now be integrated numerically for the mode functions;
once we find these, we can then compute the contribution
of the unstable modes to the subtracted correlation func-
tion equivalent to (19) (HF stands for Hartree-Fock):

$(HF)(X,7')

= [{(D(r,1)®(0,1)) —(DP(r,0)P(0,0))], (34)
6mf,R
3DMF)(x 1)
2
=g [ \dp iy SI?pPX)[‘w Uy (1)—1] .

(35)

In Fig. 2 we show 3[DHF(0,7)—DHF(0,0)] (solid line) and
also for comparison, its zeroth-order counterpart
3[D'20,7)—D©(0,0)] (dashed line) for Az =10"12
T;/T,=2. (This value of the initial temperature does not
have any particular physical significance and was chosen
as a representative.) We clearly see what we expected;
whereas the zeroth-order correlation grows indefinitely,
the Hartree correlation function is bounded in time and
oscillatory. At 7~10.52, 3[DMP(0,r)—DHF(0,7)]=1,
fluctuations are sampling field configurations near the
classical spinodal; fluctuations continue to grow, howev-
er, because the derivatives are still fairly large. After this
time, the modes begin to probe the stable region in which
there is no exponential growth. At this point
(Ag 72m} g)[{@*(1)) —®*(0)) ], becomes small again be-
cause of the small coupling g =107’ and the correction

these are the only relevant modes for the dynamics of for-
mation and growth of domains, whereas the stable
modes, will always contribute perturbatively for weak
coupling after renormalization.

Introducing the dimensionless ratios (16) in terms of
my g, m;g (all momenta are now expressed in units of
mg g ), dividing (28) by m? f R> using the high-temperature
approximation coth[B;w . (k)/2]=2T;/w (k) for the un-
stable modes, and expressing the critical temperature as
T?>=24u% /Ay, the set of Hartree equations (27) and (28)
becomes the following integrodifferential equation for the
mode functions for ¢ > 0:

U; (1)=0 (32)

[
term becomes small. When it becomes smaller than 1,
the instabilities set in again, the unstable modes begin to
grow, and the process repeats. This gives rise to an oscil-
latory behavior around (Ag /Zm},R N D)) —DH0))]
=1 as shown in Fig. 2. We clearly see that for very
weakly coupled theories, the zeroth-order correlation
function provides a fairly good approximation to the
Hartree correlations up to the “spinodal time.” Thus for
very weakly coupled theories correlation functions will be
approximately given by (20) and (21) and this permits us
to find an approximate result for the spinodal time (at
which fluctuations begin probing the stable region),

3

Ti
172
L 34 2T,
= ~—In| |5 — (36)
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FIG. 2. Hartree (solid line) and zero-order (dashed line) re-
sults for (A/2m2)[{®X7)) —{D*0))]=3D(0, ), for A=10"",
T,/T,=2.
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It is remarkable that the domain size scales as
Ep(t)=t1/? just like in classical theories of spinodal
decomposition, in which the order parameter is not con-
served, as is the case in this relativistic scalar field theory,
but certainly for completely different reasons. At the tree
level, we can identify this scaling behavior as arising from
the relativistic dispersion relation, a situation very
different from the classical description of the Allen-
Cahn-Lifshitz [11] theory of spinodal decomposition
based on a time-dependent Landau-Ginzburg model. For
strong coupling, the Hartree result and the zeroth-order
result depart at very early times [12]. It is well known
within the context of classical spinodal decomposition

that the Hartree approximation is not correct at inter-
mediate and long times. We are currently studying a
consistent treatment beyond the Hartree approximation.
Details of the calculation and possible extensions will be
presented elsewhere [12]. Of particular importance will
be the study of the interface dynamics, known to be the
relevant description in classical theories [13].
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